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VII. On the Equilibrium of Fluids, and the Figure of a Homogeneous Planet in
a Fluid State. By James Ivory, 4. M. F.R.S. Instit. Reg. Sc. Paris. Corresp.
et Reg. Sc. Gottin. Corresp.

Read January 13 and 20, 1831.

L. Equilibrium of Fluids.

1. THE nature of the ultimate particles of a fluid, and the peculiar manner
of their mutual connection, are entirely unknown to us. We conceive that
they obey the same mechanical laws to which all matter is subject. Experience
shows that the particles of a fluid move freely among one another, yielding to
the least pressure in any direction ; and this is the most general property of
such bodies that has yet been discovered. The perfect mobility of their par-
ticles must therefore, in the present state of our knowledge, be considered as
constituting the definition of fluid bodies, and as the foundation of all our rea-
soning concerning them. We here confine our attention to a fluid in equili-
brium, or at rest, in which state every particle is pressed equally on all sides.
It is evident that the mobility of the particles among one another, and their
readiness to obey any new impulse, is nowise impeded by the magnitude of
their mutual pressure, since this acts at every point with the same intensity in
all directions.

If we set aside the effect of gravity, and of all accelerating forces, it follows,
from the definition, that the pressure will be equal in all parts of a continuous
fluid at rest. In this state we must conceive that the particles are equally
distant, and arranged similarly about every interior point. Their mutual
distance, it is natural to think, must be connected with the magnitude of
pressure ; so that when they are more pressed, they will approach one another,
and the volume will be diminished ; and, when they are less pressed, they will
recede from one another, and the volume will be enlarged. Accordingly it is
found that no fluid is perfectly incompressible. But in some, such as water
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i10 MR. IVORY ON THE EQUILIBRIUM OF FLUIDS,

and other liquids, a very great external force must be applied to produce an
almost imperceptible variation of bulk ; while in others, such as air and the
gases, very notable changes of volume are caused by moderate compression.
In the investigation of the properties of the first sort of fluids, to which our
attention is here exclusively directed, we shall throw out of view the very small
degree of compressibility they possess, and shall suppose them to retain the
same bulk whatever changes of figure or pressure they may undergo.

In a fluid in equilibrium, the action of the accelerating forces that urge the
particles must be counterbalanced by the pressure propagated through the
mass : to find the relation between these opposite forces must therefore be the
first object of research. »

. 2. Assuming three planes intersecting at right angles which, by the co-ordi-
nates drawn to them, ascertain the position of the particles of the fluid, we
shall suppose two points or particles (z,y, 2) and (z 432, y + 0y, 2 4 32)
at the infinitely small distance 3s from one another; and we shall put « for
the small base of an upright cylinder or prism of the fluid placed between
the two points, and having 3 s for its length: then the density of the fluid being
invariable and represented by unit, and the quantity of matter of the cylinder
or prism being denoted by dm, we shall have

dm=w X ds.

Let all the accelerating forces which act upon the particle (z,y, z) be

reduced to the directions of the coordinates; and put X, Y, Z for the sums of

. 3z 3y
the reduced forces respectively parallel to «,y, x; then because S—;-z, 8—%’ g— are

the cosines of the angles which the line 8 s makes with «, y, %, the partial forces
urging the particle in the direction of 3 s, will be X %‘—2 , Y g—%— > Z g—i, and, if
we put

f=X¥4v¥azy
the Whole-accelerating force urging the particle (z, y, ) in the direction of 8,

will be equal to /. Multiply now by the equal quantities dm and wds, and
the result will be

SJdm=oXdx 4+ Yoy + Zd=).
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As the quantities 8 x, 3y, 33, 85, » may be assumed as small as we please, the
force f may be considered as retaining the same value for all the particles of
the cylinder or prism ; and therefore f'dm is the motive force of the cylinder
or prism, or the effort it makes to move in the direction of s from the point
(z, y, %) to the point (x +dx, y + dy, 2 + 9%).

Let p represent the hydrostatic pressure of the fluid at the point (,y, 2).
This term is used to denote the pressure relatively to the surface pressed: it is
the whole pressure any surface sustains divided by the extent of surface; or it
is the actual pressure reduced to the unit of surface. The hydrostatic pressure
is obviously variable in the different parts of a fluid, the particles of which are
urged by accelerating forces; and as it can vary only when its point of action
is changed, it must be a function of the coordinates of that point. The whole
pressure upon the end of the cylinder or prism at the point (x, y, z) will be
equal to p X w; for we may suppose that p undergoes no change in the small
extent of the surface »: and, in like manner, the whole pressure upon the
opposite end will be equal to (p + dp) X «. As the pressures upon the two
ends act against one another, their effect to move the cylinder or prism in the
direction of ds from the point (x 4 8z, y 4 3y, = 4 82) to the point (r, y, 2)
will be equal to 3p X »; and this force, on the supposition that the particles
of the fluid are at rest, must be equal to fdm, the directly opposite effect
caused by the accelerating forces. We therefore have this equation for ex-
pressing the non-effect of the equal and opposite forces, viz.

dpXawt+fdm=0:
and, if we substitute the value of fdm found before, we shall get

dp+Xdwe+Ydy+ Zoz=0. (1)

This equation must take place at every point of the mass of fluid without any
relation being supposed between the variations 8, 3y, dz; which condition
will not be fulfilled unless p be a function of the three independent variables
x,y, z. We therefore have

d 3%
5])—dw5w+ + p
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and, if we substitute this value of 5p in the formula (1), the independence of
the variations will require these three separate equations,

dp
BTr"‘"X
dp
@——Y
dp 7
dz—— -

From this it appears that the algebraic expressions of the forces are not en-
tirely arbitrary ; for they must be equal to the partial differential coefficients
of a function of three independent variables. By differentiating we shall
readily obtain the following equations which do not contain the function p,
viz.

dX _daY X _dZ dY_dzZ

dy — dz’ dz — da’ dz — dy’
Unless the forces possess these properties, which are the well-known conditions
of integrability, the equation (1) will not hold in all parts of the mass of fluid,
and the equilibrium will be impossible. But in the physical questions that
actually occur, the forces of nature being either attractions or repulsions di-
rected to fixt centres, and proportional to certain functions of the distances
from those centres, they necessarily fulfil the conditions of integrability.

The whole of what has been said is succinctly expressed by the two follow-

ing equations,

¢=/(de+Ydy+Zdz),} )

p = C - (P,
Here ¢ represents a function of three independent variables «, y, s without any
arbitrary quantity ; the constant C required by the integration is necessary
only in the expression of p.

3. The hydrostatic pressure at every point of the mass of fluid in equili-

brium, is expressed by the second of the equations (2), viz.

p=C—o.
But at all those parts of the outer surface of the fluid which are unconfined
and entirely at liberty, there is no pressure ; wherefore we have, for the equa-
tion of all such surfaces,

¢p=C.
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It may be proper to remark, that although this equation is universally true,
yet it is no new or independent condition of the equilibrium ; it is merely an
inference from the general expression of the hydrostatic pressure.

If we assume two points (2, y, 2) and (z+da, y+ dy, 3+ d=z) indefi-
nitely near one another in a part of the outer surface at liberty, we shall have,
in consequence of the foregoing equation,

rda + +d4°dz—o

or, which is the same thing,
Xde+Ydy+Zdz=0;

and if d s represent the distance of the two points, we obtain

de-l-Y -I-Z—:O.

de dy d=z

Now ds> ds> ds e the cosines of the angles which the directions of the

forces make with the line ds; wherefore the expression on the left side of the
foregoing formula is the sum of the partial forces which act in the direction of
ds; and as this sum is equal to zero in all positions of the line ds round the
point (z, y, %), the resultant of the forces produces no effect in the plane touch-
ing the surface, and consequently its whole action is perpendicular to that
plane. The nature of the case requires further, that the same resultant be
directed towards the surface of the fluid.

What has been deduced from the algebraic expressions is evident in another
view. For, could we suppose that the resultant of the forces is not at every
point perpendicular to the surface at liberty, it might be resolved into two
partial forces, one acting in the tangent plane, and the other perpendicular to
that plane ; and as the first force is opposed by no obstacle, it would cause the
particles to move, which is contrary to the equilibrium.

If we suppose that p is constant in the general formula of the hydrostatic
pressure, we shall have an equation,

p=C—p,
which is exactly similar to that of the surface at liberty, and which will deter-

mine an interior surface at every point of which there is the same intensity of
MDCCCXXXI. : Q
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pressure. By differentiating the equation of the interior surface, we obtain
Xde+Ydy+Zdz=0;

from which we deduce, by the like reasoning as before, that such surfaces are
perpendicular to the resultant of the accelerating forces urging the particles
contained in them. The interior surfaces in question were named level sur-
faces by Crairaut; and they are distinguished by the two properties of being
equally pressed at all their points, and of cutting the resultant of the forces at
right angles. They spread through the mass, and ultimately coincide with
those parts of the outer surface which are at liberty. It may be observed, that
what essentially constitutes a level surface is its equation, which must differ
from the equation of the outer surface at liberty in no respect, except that the
constant C — p takes the place of the constant C ; for we shall afterwards find
that, in some cases of the equilibrium of a fluid, the two properties of being
equally pressed, and of cutting the resultant of the forces at right angles, belong
to more sets of interior surfaces than one.

4. In what goes before, we have supposed that the density is constant, but
it is easy to extend the investigation to heterogeneous fluids. Let ¢ be put for
the function of the co-ordinates which expresses the variable density; then
admitting that ¢ has the same value at every point of the small elementary
cylinder or prism, we shall have

dm=¢wds;
but, f being the whole accelerating force, urging every particle of dm in the
direction of 9 s, we have

dx 3y 0%
f= X?S—s + YE_E+Z§?
wherefore,
fdm=¢a(Xd3ax+ Yoy + Z3z).

The equation expressing that the action of the accelerating forces is equal
and opposite to the variation of pressure, is the same as before, viz.

oX3p+fdm=0;
and by substituting the value of f'dm, we deduce
dpt+eXde+Yoy+Zdz) =0. 3)
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This equation must hold at every point of the mass of fluid without any rela-
tion being supposed between the variations, wherefore p must be a function of
three independent variables ; and in consequence the foregoing equation im-
plies the three separate equations following, viz.

dp dp dp
d7=_fX’ @-—-‘—-gY, == —pZ.

b4

It now appears that the conditions of integrability must be fulfilled, viz.

deX deY d.e X___d.g VA do¥Y _deg Z.
dy — dz’ dz — dz’ dz — dy’

and unless the forces possess the properties expressed by these equations, the
equilibrium will be impossible.
Without pursuing the investigation in all its generality, we shall confine our
attention to the case in which
Xdae+Ydy+Zdx,

is an exact differential ; a supposition that comprehends all the applications of
the theory. If we represent the integral of the differential by ¢, so that

dop=Xdao+Ydy+Zdz;
and convert the variations of equation (3) into differentials, we shall obtain
d P + e d o=0;
and hence
p=C—/edo. (4)

From this we deduce the equation of those parts of the outer surface which are
at liberty, by making p = 0; and that of a level surface, by assigning to p
some constant value. And if we differentiate the same equation (4) on the
supposition that p is invariable, we shall get

edop=¢Xda+Ydy+ Zdz)=0,
which differential equation is common to the outer surface at liberty, and to
all the interior level surfaces; and from which we deduce by the like reason-
ing as before, that all such surfaces are perpendicular to the resultant of the
accelerating forces urging the particles contained in them.

The quantity under the sign of integration in the formula,
p=C-—/fedo,
Q2
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must be an exact differential, for p must be a function of the co-ordinates ;
which condition will not be fulfilled unless ¢ be a function of ¢. Thus both
the pressure p and the density ¢ are functions of the same quantity ¢, and they
are both invariable where ¢ is constant. The density is therefore the same at
all the points of any level surface. If we conceive a heterogeneous fluid in
equilibrium to be divided into thin strata by level surfaces infinitely near one
another, the density will be the same throughout every stratum, but it will
vary from one stratum to another.

5. We have now placed before the reader the general points of the theory of
the equilibrium of fluids. What has been said comprehends all that can be
determined when a fluid is conceived to extend indefinitely; but in applying
the theory to limited masses, it is necessary besides, that the pressures propa-
gated through the interior parts either be supported or mutually balance one
another. ,

In treating of the equilibrium of fluids, another mode of investigation is
sometimes employed, which it would be improper to pass by without notice,
as it is useful on many occasions to fix the imagination, although it leads to no
new results. We allude to the narrow canals supposed to traverse the mass
in various ways, of which so much use has been made by Crairaur and other
authors.

Let two points («°, 9°, 2°) and (2, 2/, 2') be assumed in the interior of a
mass of fluid in equilibrium, and conceive an infinitely narrow canal of any
figure to pass between them ; we may suppose that the whole fluid, except the
portion within the canal, becomes solid without any change taking place in
the position of the particles, or in their mutual action upon one another; for,
as this supposition makes no alteration of the forces urging the particles con-
tained within the canal, these particles will remain at rest after the solidifica-
tion as they were at first. Suppose that the canal is divided into infinitely
small parts by sections perpendicular to its sides; at any point (z, y, 2) let w
be the section ; s the infinitely small part of the length of the canal; dm the
quantity of matter in the length 8 s, that is, the product of the volume and the
density, org X » X ds; and fthe sum of all the partial forces that urge the
particles of dm in the direction of the canal; then, the motive force of dm, or
its effort to move, will be equal to fdm. Further, p being the hydrostatic
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pressure at the point (z, v, 2), the like pressure at the distance of 3s will be
p + 3p; therefore the opposing pressures which act upon the two ends of the
part of the canal in the length ds, will be p X » and (p+49p) X w; and
3p X o will be the effective pressure which pushes dm towards the point
(, y, ). Because every part of the canal is supposed at rest, the tendencies
of dm to move in opposite directions must be equal, and we shall have this
equation,

dpXat+fdm=0;
consequently,

op +f‘ila7‘ = 0;

and by taking the sum of the similar quantities in all the parts of the canal, we

obtain
fap -+ f-d;n_z =0.

But p being a function of three independent variables, the sum of its variations,
supposing the flowing quantities to follow any arbitrary law of increase or de-
crease, is equal to the difference of p' and p°, the final and initial values of the
function ; wherefore we have V

pf_po_l_/fjm:().

Now fdm, that is the quantity of matter multiplied by the accelerating force,
is the impulse or pressure in the direction of the canal caused by all the forces

Jd

m .
—is the same

urging dm; and as this pressure is exerted on the surface w,

pressure reduced to the unit of surface. Therefore, whatever be the figure of
the canal, it follows from the foregoing investigation, that the difference of the
pressures at its two extremities is equal to the sum of the impulses of all the
contained molecules of fluid, every impulse being reduced to the direction of
the canal and to the unit of surface.

If the extremities of the canal be both in the parts of the outer surface which
are at liberty, the pressures p' and p° will be both evanescent, and there will
be no effort of the fluid either way, and no tendency to run out at one end.
Further, if a canal be continued through the fluid till it return into itself, the
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initial and final pressures being the same, the impulses of the molecules in the
whole circuit will balance one another. But in this case, the reasoning we
have employed will not be exact, unless p, the algebraic expression of the
pressure, be such a function as admits of only one value for any three given
co-ordinates ; a restriction however, which, in every point of view, seems in-
dispensable.

6. The whole theory, it will readily appear from the foregoing investigations,
is built on the assumption, That the hydrostatic pressure at every point of the
fluid is the same function of the co-ordinates of the point. The accelerating
forces are represented by the partial differential coefficients of the pressure;
and therefore they are likewise the same functions of the co-ordinates of their
point of action in every part of the mass. The whole reasoning rests on these
fundamental points; and if the state of a fluid were such that they are not
verified, the equations for determining the required figure could not be formed,
and the equilibrium would be impossible. As the hydrostatic pressure is known
only by means of the given accelerating forces, it seems most suitable to em-
ploy the properties of the latter in laying down what is required for the equi-
librium of a mass of fluid. It is necessary, and it is sufficient for the equili-
brium of a homogeneous fluid, first, that the accelerating forces acting in the
directions of the co-ordinates be, in every part of the mass, the same functions
of the co-ordinates; and, secondly, that these functions possess the conditions
of integrability. When these two conditions are both fulfilled, the determina-
tion of the figure of equilibrium is reduced to a question purely mathematical.
For we can form the equation (1) which makes the accelerating forces balance
the variation of pressure; and, by integrating this equation, we obtain the hy-
drostatic pressure, from which is deduced the equation of all those points at
which there is no pressure, or in other words, the equation of all those parts
of the outer surface which are at liberty. Nothing more is required for se-
curing the permanence of the figure of the fluid, except that the pressures pro-
pagated through the mass be either supported or mutually balance one another.

The conditions for the equilibrium of a homogeneous fluid, as they are here
laid down, do not enable us in all cases to form immediately the equation of
the figure of equilibrium. If the particles attract or repel one another, the
accelerating forces will, for the most part, vary as the fluid changes its form,
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and they may not be at every point the same functions of the co-ordinates in
all the figures, of which it is susceptible ; but, notwithstanding the equilibrium
may still be possible, because this indispensable condition may be fulfilled when
figures of a certain class are induced on the mass. In such cases, the deter-
mination of the equilibrium necessarily requires two distinct researches; of
which one is to find out what are the particular figures into which the mass
must be moulded, so as to make the accelerating forces at every point the same
functions of the co-ordinates. After these figures have been found, we can
apply to them the equations expressing the conditions of equilibrium, and ac-
complish the mathematical solution of the problem. DBut if it shall appear that
no figure whatever capable of fulfilling both the conditions laid down above
can be induced on the fluid, the equilibrium will be absolutely impossible.

In the usual exposition of this theory, the equilibrium is made to depend on
conditions that do not exactly coincide with those at which we have arrived.
According to Cramravur and all other authors who have written on this sub-
ject, it is necessary, and it is sufficient, for the equilibrium of a homogeneous
fluid, first, that the expressions of the accelerating forces possess the criterion
~of integrability ; secondly, that the resultant of the forces in action at all the
parts of the outer surface which are at liberty, be directed perpendicularly to-
wards these surfaces.  We may throw out of view what regards the criterion
of integrability, about which there is no difference of opinion, and which in
reality is always fulfilled by the forces that occur in physical researches. The
perpendicularity of the forces to the outer surface is a property of the differen-
tial equation of that surface, and will necessarily take place whenever it is pos-
sible to form that equation. Nothing more is required for forming the equa-
tion mentioned, than that the accelerating forces at every point of it be ex-
pressed by the same functions of the co-ordinates of the point.* It follows

* The forces are perpendicular to every surface in which the pressure is constant. The outer sur-
faces are those at every point of which there is no pressure, In all the questions that have occurred,
the forces at the outer surface of the fluid are the same functions of the co-ordinates of the point, what-
ever geometrical figure the fluid is supposed to assume; and on this account the equation of the outer
surface can be formed without reference to any particular class of figures. But this is not sufficient ;
for, according to the fundamental assumption laid down by Crarraur himself, the theory.of equilibrium
cannot be applied, unless the forces be the same functions of the co-ordinates of their point of action
in every part of the mass.
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therefore, that the difference between the conditions of equilibrium hitherto
universally adopted, and those laid down above, amounts to this: according
to the former it is required that the expressions of the accelerating forces be
the same functions of the co-ordinates at every point of the outer surface, this
being all that is necessary for forming the differential equation of that surface;
according to the latter, the forces will not balance the pressure, and the laws
of equilibriuma will not be fulfilled unless the forces be the same functions of
the co-ordinates at every point whether situated in the outer surface, or in the
interior part of the mass. :

If a homogeneous fluid, of which the particles are urged by accelerating
forces be in equilibrium, all that is required by Crairaur’s theory will un-
doubtedly be fulfilled ; but the converse of this cannot be affirmed. It is no
where proved generally by unexceptionable arguments, and indeed no proof
can possibly be given, that the forces in the interior parts of the fluid will
balance the pressure, merely because the resultant of the forces in action at
the outer surface is perpendicular to that surface. All the attempts that have
been made to demonstrate this point, tacitly assume that the expression of the
forces is the same at the surface and in all the interior parts ; which is not uni-
versally true.

In a very extensive class of problems the difference between the two ways
of laying down the conditions of equilibrium disappears. This will happen
when the accelerating forces are independent of the figure of the fluid, as will
be the case if the particles exert no action on one another by attraction or
repulsion. In such problems the forces impressed upon every particle, what-
ever be its situation, and whatever be the figure of the fiuid, are by the hypo-
thesis, the same given functions of the co-ordinates. The figure of equilibrium
will be the same whether, following Crairaur, we obtain the equation of the
outer surface by means of the forces in action at that surface, or, making use
of the property that the pressure vanishes at all the points where the fluid is at
liberty, we deduce the same equation from the pressure that prevails generally
throughout the mass.

But Crairaut’s theory cannot be extended to the solution of other problems
than those of which we have been speaking. In no other cases is it evident
without inquiry that the proposed accelerating forces urging a particle, are, in
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every part of the mass, the same functions of the coordinates of the particle ;
and unless this be verified, the theory of equilibrium cannot be applied. Ina
homogeneous planet in a fluid state, there are forces which prevail in the in-
terior parts and vanish at the surface; and, as CrairauT’s theory notices no
forces except those in action at the surface, it leaves out some of the causes
tending to change the figure of the fluid, and therefore it cannot lead to an
exact determination of the equilibrium.

I1. dpplication of the foregoing Theory to the Question of the Figure of the
Planets.

7. Having now explained the general theory of the equilibrium of fluids at
sufficient length, I proceed to apply it to the question of the figure of the
planets, in which it is required to determine the equilibrium of a fluid entirely
at liberty, and unconfined by any obstacle or support. The problem is one of
considerable difficulty. It is necessary to distribute the investigation under
distinct heads. It would otherwise be impossible to preserve perspicuity and
precision of ideas in an inquiry essentially different in different hypotheses.
The equilibrium of a homogeneous fluid must occupy our attention before that
of one having its density variable. For although it may at first appear that
the latter problem is the more general, and includes the former, yet it will be
found that the equilibrium of a fluid of variable density, depends upon that of
a homogeneous fluid, and is deducible from it. And even with regard to
homogeneous fluids, distinctions must be made, because what is required for
the equilibrium varies with the nature of the accelerating forces. In this
respect we distinguish these two general cases, of which we shall treat in two
separate problems ; First, when the accelerating forces depend only on the co-
ordinates of their point of action, and are explicitly known when the coordi-
nates are given ; Secondly, when the accelerating forces depend not only upon
the coordinates of the particle on which they act, but likewise upon the figure
of the whole mass of fluid; as happens for the most part when the particles
attract or repel one another.

MDCCCXXXI. R
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Problem 1st.—To determine the equilibrium of a homogeneous mass of fluid
which is entirely at liberty, when the accelerating forces are known func-
tions of the coordinates of their point of action.

The equilibrium of a mass of fluid which is entirely at liberty, can depend
only upon the action of such forces as tend to change the relative position of
the particles with respect to one another. It is not affected by any motion
common to all the particles, nor by any force which acts upon them all with
the same intensity in the same direction ; the effect of such motion, or of such
force, being to displace the centre of gravity of the whole mass without altering
the relative situation of the particles. In estimating the accelerating forces
upon which the figure of equilibrium will depend, we must therefore begin
with reducing the centre of gravity, if it be in motion or urged by any force,
to a state of relative rest ; which is accomplished by applying to every particle
a force that would cause it to move with the same velocity as the centre of
gravity, but in a contrary direction. In the investigation of this problem we
may therefore suppose that the centre of gravity is at rest and undisturbed by
the action of any accelerating force.

Suppose now that a mass of homogeneous fluid entirely at liberty, is in equi-
librium, and conceive three planes intersecting at right angles in the centre of
gravity of the mass, to which planes the particles of the fluid are to be referred
by rectangular coordinates. Let x, y, 2, represent the coordinates of a particle,
and having resolved the accelerating forces acting upon it into other forces
that have their directions parallel to the coordinates, put X, Y, Z, for the sums
of the resolved parts respectively parallel to «, y, 3, and tending to shorten
these lines. According to the hypothesis of this problem, the forces X, Y, Z,
depend only upon the coordinates of their point of action; and they are at
every point the same functions of those coordinates. The equilibrium will
therefore be impossible unless ‘

Xde + Ydy + Zdx

be an exact differential, this being necessary in order that the hydrostatic
pressure be a function of three independent variables as the fundamental
assumption of the theory demands. Let ¢ denote the integral, and p the
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hydrostatic pressure at the point (2, y, 2,) : the equations that determine the
equilibrium will be these two *,

¢=f(de+Ydy+Zdz),}
p=C—o.

If we make p = 0, we shall obtain the equation of the outer surface of the
fluid, viz.
o =2C.

The differential equation,
Pde+ d; dy + % dz=o,

or which is the same,
Xdae+Ydy +Zdzx=0,

is common to the outer surface and to all the interior level surfaces at every
point of which there is the same intensity of pressure; and it shows that the
resultant of the accelerating forces is perpendicular to all such surfaces ¥

The figure of the fluid being determined, it remains to inquire whether the
equilibrium is secured. By varying the coordinates in the formula for p, we
obtain

Bp+d23x+d¢3 +d¢Bz—0

which equation proves that, if a particle be moved from its place a very little
in any direction, the variation of the intensity of pressure is equal and opposite
to the action of the accelerating forces. A particle has therefore no tendency
to move from inequality of pressure. But we must not from this hastily con-
clude that there is no cause tending to change the figure of the fluid. For, as
in the simple case of a fluid contained in a vessel, the equilibrium requires not
only that the accelerating forces balance the inequality of pressure, but like-
wise that the total pressures tending outward at the boundaries of the mass, be
supported by the sides of the vessel; so in the problem under consideration,
there being no external support, the figure of the fluid will not be permanent

* Equation (2) § 2. + Equation (2) § 3.
R 2
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unless the pressures propagated inward, which increase as any point sinks
deeper below the surface, mutually compensate and destroy one another.
Some further discussion is therefore necessary in order to prove that the equi-
librium is completely established.

The function ¢, in which we may suppose there is no constant quantity, can
contain no term having the coordinates for divisors; for, were this the case,
the pressure would be infinite at all those points where such coordinates are
equal to zero. Let the terms of ¢ be arranged in homogeneous expressions of
one, two, three, &c. dimensions ; then

p=(A1z+ Ay + Azz)
+ B12® + Byy? + By 22+ Bay + Byx 2+ Byy 2)
+ Dy2® + Dy + Dy 25 + Dya?y + &e.)
+ &ec.
Differentiate this expression, and after the operations put =0, y =0,
z = 0: then

de

dg
iz = Ao

de
@ = A2, = A3.

Z—z‘ —

But the differentials of ¢ are no other than the expressions of the accelerating
forces acting on a particle; consequently A,, A,, A; are the forces in action at
the origin of the coordinates, that is, at the centre of gravity of the mass.
Wherefore, according to what was observed, we shall have

A;=0, A,=0, A;=0,
o= (B22+Byy> + B3 22+ Byzy + Byrz + By 2)
+ (D1 2* + Dy 3® + Ds 2* + D, 2%y + &e.)
4 &ec. ‘

That the expression of @ must be of this form is required by the nature of the
problem : for ¢ must be always positive, and it must increase continually from
the centre of gravity to the surface of the fluid.

Let us now put

rx=rcosd=rk,
y=rsindcosy =ry,
g =rsindsiny =r{,
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then » will be the line drawn from the centre to the point (z, y, 2); and the
arcs 4 and +J determine the direction of r, ¢ being the angle between » and the
axis of the coordinates parallel to x, and +J the angle which the plane containing
r and the same axis makes with the plane of x,y. By substituting, we get

o=r2(B, 2+ By + B2+ B, En+ B+ Bs % 0)
47 (D 8+ Dy#+ D, P 4+ DEa+ &)
-+ &ec. ”

The symbols &, 7, {, represent three rectangular coordinates of a point in the
surface of a sphere having unit for its radius ; and, in order to simplify, I shall
write Q,, Q;, and generally Q,, for homogeneous functions of £, #, {, of two,
three, and # dimensions: then,

e =r2Q, + P Q; + " Q, + &c.

For the sake of distinction, let R represent a line drawn from the centre of
gravity to the surface of the fluid; and r a line drawn from the same centre
to any interior point at which the pressure is p, the directions in which R and
r are drawn being determined by the arcs ¢ and /: the equation of the fluid’s
surface, and the expression of p, will be as follows,

C=R2Q,+ R3Q, + R*Q, + &c.
p=C— (2 Q4+ rQ+ Q.+ &c.)

By means of these equations a radius, R or », will be known when the arcs ¢
and 4 which determine its direction are assumed ; and in this manner we may
find all the points of the outer surface, and of any interior level surface in
which p has any assigned value less than C. All these surfaces will return into
themselves and inclose a space: because in whatever direction we proceed
from the centre of gravity to the surface, the function ¢ passes through every
gradation of magnitude between zero and the maximum.

It is now easy to complete the demonstration of the equilibrium. A stratum
of the fluid between the outer surface and any interior level surface will evi-
dently be in equilibrium, if we suppose that the level surface maintains its
figure, or rather, that there are no forces urging the particles contained within
that surface: for, the upper part of the stratum cuts the resultant of the forces
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at right angles, and the fluid presses perpendicularly and with the same inten-
sity at every point of the lower surface which supports the stratum. What is
here affirmed is true, however near the level surface be to the centre of gravity ;
and as the accelerating forces urging the particles within the surface decrease
without limit in approaching that centre, they may finally be regarded as eva-
nescent when the internal body of fluid is no more than a drop occupying the
centre of gravity. Wherefore, by taking the radius of the level surface small
enough, the inclosed fluid may be considered free from any accelerating forces,
and subject only to the external pressures; and, these being perpendicular to
the surface, and acting with the same intensity, the whole mass of fluid will
be in equilibrium by the known laws of hydrostatics.

It may be proper to add that the mass of fluid has no tendency to turn upon
an axis. For no motion of this kind can be produced by the pressures propa-
gated inward from the surface, the directions of which pass through the centre
of gravity. Neither can the accelerating forces urging the particles, cause
any such motion, these being wholly employed in counteracting the inequality
of pressure.

For the sake of illustrating the problem we have solved, we shall add one
example, which is besides intimately connected with the principal subject of
our research.

Example—~—To determine the figure of equilibrium of a homogeneous mass
of fluid entirely at liberty, the particles being supposed to attract one another
with a force directly proportional to the distance at the same time that they
are urged by a centrifugal force caused by rotation about an axis.

At first view the proposed problem may seem one in which the accelerating
forces depend upon the figure of the fluid, since it is supposed that every par-
ticle is attracted by every other. But, in the particular law of attraction
assumed, the force which urges any particle is directed to the centre of gravity
of the whole mass of matter, and is proportional to the distance from that
point *. The hypothesis of the problem is therefore equivalent to the suppo-
sition that the particles of the fluid are attracted to a fixt centre with a force
proportional to the distance; so that the accelerating forces are independent
of the figure of the fluid. '

* Prin. Math, Lib. i, Prop. 88.
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As the centre of gravity of a mass of fluid in equilibrium must be free from
the action of any force, except what is common to all the particles ; and as the
attractions of the particles balance one another at that point; the centrifugal
force must likewise be evanescent at the same point, and consequently the
axis of rotation must pass through it. Let three planes intersecting at right
angles, one being perpendicular to the axis of rotation, pass through the centre
of gravity ; and assuming any particle of the fluid, let » denote its distance
from the same centre, and «, y, 2 its coordinates, z being parallel to the axis of
rotation : further, let g represent the attractive force of the whole mass of fluid
at the distance equal to unit from the centre of gravity ; and f the centrifugal
force (that is, its proportion to g) at the distance equal to unit from the axis
of rotation : then g r will be the central attraction urging the particle, and g x,
gY, &%, will be the resolved parts of the same force in the directions of the
coordinates : also, /2% + y? will be the distance of the particle from the axis
of rotation ; — f'x/a? 4 3?2, the whole centrifugal force estimated as tending
to shorten the coordinates ; and — f, — fy, the resolved parts of the same
force, parallel to  and y: collecting, now, the partial forces which urge the
particle in the respective directions of the coordinates, we shall find,

X=@g=Nz Y=g-fly, Z=g=x
The equations of equilibrium will, therefore, be
p=f(Xde+Ydy+2Zdz)=3}{(g—f) @ +y) + g2,
p=C-3z{g-f)@+y)+g="
The equation of the surface of the fluid will be found by making p = 0, viz.
C=3(@g-f) @+ + iz
S

And, if we put € = e the same equation may be thus written,

zﬂ
d=at4+yt + 0,
which belongs to an elliptical spheroid of revolution having the equatorial

semidiameter equal to a, and the polar semi-axis to a /1 — ¢
8. The order of discussion that has been laid down now brings us to the
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more difficult part of this research, when the accelerating forces urging the
particles of the fluid, depend upon the very figure of equilibrium which is to
be investigated. This must happen in fluids consisting of particles that
mutually attract one another, if the attractive force acting upon a particle vary
with the figure of the attracting matter. In this division of our subject, the
law of attraction that prevails in nature being in reality the only one which it
is of much importance to consider, will chiefly engage attention.

Problem 2nd.—To determine the equilibrium of a homogeneous fluid entirely
at liberty, the particles attracting one another with a force inversely
proportional to the square of the distance, at the same time that they are
urged by a centrifugal force caused by rotation about an axis.

The fluid being supposed in equilibrium, the axis of rotation must pass
through the centre of gravity of the mass. For, abstracting from any motion
or force common to all the particles, that centre may be considered at rest
and free from the action of any accelerating force ; and, as the attractive forces
balance one another at that point, the centrifugal force must likewise vanish
at the same point.

Conceive three planes intersecting at right angles in the centre of gravity of
the mass, one of them being perpendicular to the axis of rotation: let x, y, =
represent the coordinates of a particle in the surface of the fluid, « being
parallel to the same axis; and put V for the sum of the quotients of all the
molecules of the mass divided by their respective distances from the particle :
then the attractive forces urging the particle inward in the directions of x, v, z,
will be respectively equal to

_dv _av _av
de> — dy> = dz’
Further, if f denote the centrifugal force at the distance unit from the axis of
rotation, the action of the same force at the distance »/y? + 22 from the same
axis will be £./y% + 2%; and the resolved parts of this force urging the par-
ticle to move in the prolongations of y and z, will be fy and f'x. Wherefore
the total forces parallel to x, y, 3, and tending to shorten these lines, are
respectively,
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av av av
il P 75+f:’/), - 'd';'l'fz)?
and the condition that the resultant of these forces is perpendicular to the
surface of the fluid is expressed by this differential equation,

av av av

e dx+ @—dy—i- Tz A3+ f(ydy +=zdz)=0;
and the integral, viz.

C=V 4%+,

is the equation of the surface of the fluid in equilibrium. This is incontestably
the true equation of the surface in equilibrium, since all the forces in action at
that surface have been taken into account.

Using x, y, 3 to represent generally the co-ordinates of any particle of the
mass, and the symbol V, to denote the function of z, y, 3, which is equal to
the sum of the quotients of all the molecules of the mass of fluid divided by
their respective distances from the particle, it will be convenient to have some
means of pointing out whether V belongs to a point in the surface, or to one
differently situated. For this purpose we shall put r = /22 + y* + 22 for the
distance from the centre of gravity, and shall write V (r) for the value of V
relatively to a point within the mass; and we shall suppose that r becomes R
at the upper surface, so that V (R) will denote the value of V for a point in that
surface. According to this notation, the foregoing equation of the surface of
the fluid in equilibrium, will be thus written,

C=V®) +% @+ (1)

The attraction of the whole mass and the centrifugal force, which are the
only forces that urge a particle in the upper surface, likewise act upon every
particle in the interior parts of the fluid. It will contribute to perspicuity if
to these forces we give the name of the principal forces, in order to distinguish
them from any other forces which an attentive examination may enable us to
detect. Assuming any molecule in the interior parts,  being its distance from
the centre of gravity, and x, y, z its coordinates, we have only to proceed as
before, writing V (r) for V, in order to find the resolved parts of the principal
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forces which urge the molecule inward in the respective directions of x, v, =,
viz.
dV(r) d V (r)
- d ag B - +f ) +f )
and if these forces be multiplied, each by the variation of its direction, the sum
of the products will be the variation of the intensity of pressure, which is equal

and opposite to their action, according to equation (1) of the general theory;
thus, we have,

dV(r)

dSp— ‘-l—'g—;—(QBm—d'Z(r)By d. V( )Bz—f(yBy-l-sz)_O " (2)

and, as this equation is true at every point of the mass, we further obtain
P=VO)+%5 2+ -G, 3

the constant being the same as in the equation (1) of the upper surface, be-
cause the two equations must coincide when the interior molecule ascends to
the surface. It must be observed that p represents the intensity of pressure
caused by the principal forces alone, and not the whole pressure upon the
molecule, if besides these forces there exist other causes of pressure in the in-
terior parts.

From the nature of the function V or V (r), it has its maximum at the centre
of gravity of the mass, or when » = 0; for at that point we have the equations

d.V@) d. V()

0 d.V(r)
dz =% Tdy

=0, dz

=0,

because the attractive forces balance one another. While », without any
change in its direction, increases to be equal to R, V (r) continually decreases.
In whatever direction the radius R be drawn to the surface, there is always a
point in it, the coordinates of which will satisfy equation (3), supposing that
p has any assigned value less than the maximum which takes place at the
centre of gravity. All the points in which p has the same given value will
form an interior surface, returning into itself and pressed with equal intensity
by the action of the principal forces upon the exterior fluid. Such interior
surfaces are likewise perpendicular to the resultant of the principal forces
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urging the particles contained in them, as will readily be proved by differen-
tiating equation (3), making p constant.

In order to place what has been said in the clearest light, let AB C repre-
sent the mass of fluid, the surface being determined by the equation,

C= V(R)+ (*+ 275

and suppose that a 6 ¢ is an interior surface, obtained by making p constant in
the equation,

p= V(r)+ (2 + =) —C:

then, if the narrow canal A am M
stand upon the molecule am of the
interior surface, and extend to the
upper surface of the fluid, the in-
tensity of pressure upon am, or the
given quantity p, will be equal to
the sum of all the impulses caused
by the action of the principal forces
upon the molecules contained in
the canal, every impulse being re-
duced to the direction of the canal
and to the unit of surface. The
same thing is true of any other mo-
lecule in the same surface upon which there stands a 51m11ar canal B bnN.

If we attend to the conditions of equilibrium required by the general theory,
it will readily appear that the equilibrium of the mass A B C will be impossi-
ble, if at any point, as a m, of the interior surface a b ¢, any other pressure exist
besides that represented by p, or any other forces be in action besides those
expressed by the coefficients of the variations in equation (2). For, at the
upper surface, there are no forces in action but the principal forces, and the
equilibrium will be impossible if other forces prevail in the interior parts be-
sides the principal forces. On the other hand, the matter contained in the
stratum between the two surfaces will attract every particle, as am, situated
in the interior surface. The attraction of the stratum is an indelible force not

s 2
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to be destroyed, which will produce its full effect according to the figure and
quantity of the attracting matter and the situation of the attracted point. The
equilibrium will therefore be absolutely impossible, unless such a figure can be
induced on the mass of fluid as will set free every particle in the surface abc
from the attraction of the stratum. If such a figure can be found, every mole-
cule of the mass will be urged by the principal forces only; because a surface
such as a b c, at every point of which these forces alone will be in action, may
be described through any interior molecule @ m arbitrarily assumed. We must
therefore turn our attention to investigate such figures, if there be any, as will
make the irregular attraction in the interior parts disappear, so as to leave the
principal forces alone in action ; for, unless this can be effected, the fluid can-
not maintain a permanent form.

According to the notation we have used, if » denote the distance of am from
G, V (r) will represent the sum of the quotients of all the molecules of the
whole mass divided by their respective distances from am ; let V' (r) denote
the same thing, relatively to the interior mass a b ¢, that V (r) does, relatively
to the whole mass A BC; then V (r) — V' (r) will denote the sum of the quo-
tients of all the molecules of the stratum divided by their respective distances
from am. Take a point (x4 dx, y + dy, 2 + dz) in the surface abc infi-
nitely near am ; and, differentiating in the surface, the expressions,

a.(V@) =V ) d. (V)= V() d.(Vir)=V'()

dz ’ dy T dz ’
will be equal to the attractive forces of the stratum upon the particles of am,
in the respective directions of @, y, 2 : but, as we have shown, the equilibrium
indispensably requires that these attractions be evanescent, so that we have

these equations, ;
d.(V(r) = V'(r) a.(V(@r) = V() d. (V) =V @)
iz =0, dy =0, P =0,

#* The perpendicularity to the surface a b c, of the attraction of the stratum upon am, is expressed by
this equation,

4. (V@) = V() d.(V () = V() a. (Vo) =v() .
o7 dz + iy dy + e dz=0;

and it is a consequence of the differential equations in the text. The neglect of this consideration, and
the assumption that the level surfaces depend solely upon the outer surface in every case, is the great
blemish of CrairauT’s theory.
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which are no other than the partial differentials of the equation,

V (r) — V' (r) = constant. (4)
This equation must hold at every point of every interior surface, such as abc;
and, as its differentials are separately equal to zero, it must not contain the
coordinates of the surface. If such a figure can be induced on the mass of
fluid as will possess the property expressed by equation (4), every particle of
the mass will be urged by the principal forces alone, the equilibrium will be
possible, and it will be determined in the very same manner as in the first
problem.

We have now obtained a mathematical property that distinguishes the figures
with which the equilibrium is possible from all others. We have also, in an-
other place¥, investigated the figures that alone possess this property; and it
appears from what is there shown, that A B C can be no other but an ellipsoid,
and that every interior surface, as a b c, is similar to the outer surface, and simi-
larly posited about G.

Having demonstrated that the fluid in equilibrium must be an ellipsoid, it
readily follows that the axis of rotation must be one of the three axes of the
geometrical figure. For, as the axis of rotation passes through G, the centre
of gravity, it is a diameter of the ellipsoid; and the centrifugal force being
evanescent at the extremities of this diameter in the surface of the fluid, the
only force in action at those points is the attraction of the mass of matter.
But the whole force urging every particle in the outer surface of the mass in
equilibrium, is perpendicular to that surface; wherefore, the attractive force
of the ellipsoid is perpendicular to its surface at the extremities of the diameter
about which the fluid revolves; and as there are no points on the surface of
that geometrical figure at which the attraction of its mass is perpendicular to
its surface, except the extremities of its three axes, it follows that with one or
other of these, the axis of rotation of the fluid in equilibrium must coincide.

Let us now determine the relations between the axes of the ellipsoid and the
centrifugal force. Of the three planes of the coordinates, one, which is per-
pendicular to the axis of rotation, is a principal section of the ellipsoid ; and
we may suppose that the other two coincide with the two remaining principal
sections. We may therefore compute V (R) for a point in the surface; and
by substituting this value in the equation,

% Phil. Trans, for 1824,
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0=V®) +% @2+ —C,

and making the result coincide with the geometrical equation of the figure, we
shall obtain the expressions of the axes in terms of the centrifugal force. But
it will be more simple to use the differential equation,

+1y)dy — (S +f5) dz =,

which expresses the perpendicularity of the forces to the outer surface. The
quantities,

4.V (R)
— dx

do— (& V(R)

_a.V(R) _d. V(R) _d.V(R)
dz dy °> = dz °

are the attractive forces of the ellipsoid, urging a particle of the surface in di-
rections parallel to the axes; and these forces, by the nature of the ellipsoid,
are proportional to the coordinates of the point on which they act, and may be
represented by A'z, B'y, C'z, the coefficients A’, B', C' being known quan-
tities depending upon the ratios of the axes of the ellipsoid; wherefore, these
values being substituted in the differential equation, we shall have,

Azde+ B —fydy+ (C —f)zdz=0;
and by integrating,

% 4 B/ -|- fz2 = constant.

Now, if h, #/, " represent the axes of the ellipsoid, % being that about which
the fluid revolves, the equation of the surface of the figure will be,

52 2
$2+Z7§y2+ Z,;—QzZ:}lZ;

and with this equation the foregoing one must be made to coincide. On ac-
count of the arbitrary constant, we have only to equate the coeflicients of y2
and z2, and the resulting formulas may be thus written,

f=B-5A  f=c- A

But, on examining the functions that A', B, C' stand for, it will readily appear
that the expressions on the right side of the two formulas will not be positive,
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. 2 2
and consequently they cannot be equal to f, unless %72 and h—}f;g, be both less than

unit: and supposing that A is the least of the three axes, the two values of f
will not be equal, unless B'=C, and #' = 4", in which case both the formulas
coincide in one, viz,

f=B 1A

In conclusion, it follows that the figure of the fluid in equilibrium is an oblate
elliptical spheroid of revolution, of which the equation is

o 2
22+ 7 (P4 2 12
the mass turning about % the less axis, and the relation between the centrifugal

force and —; the ratio of the axes, being determined by the equation

f=B-"un

The complete solution of the problem is now brought to the discussion of this
last equation ; and as this is a question purely mathematical, but slightly con-
nected with the physical conditions of the equilibrium, which we have under-
taken to investigate, we shall refer to the Mécanique Céleste of Laprace and
to the Théorie Analytique du Systéme du Monde of M. de PonTECcoULANT, in
which works this point is amply treated.

The foregoing solution; being perfectly general, proves that the equilibrium
is possible only when the elliptical spheroid is oblate at the poles. When the
spheroid is oblong, and the axis of rotation . greater than the other axis 4, the
expression that must be equal to the centrifugal force is negative; and as that
force is essentially positive, the equilibrium becomes impossible.

It will not be necessary to retrace the steps of the foregoing analytical pro-
cess of reasoning, in order to show synthetically that the equilibrium will be
secured if the conditions deduced be fulfilled. For, as soon as such a figure is
found as will make the forces that actually urge every particle of the mass the
same functions of the coordinates of their point of action, this problem comes
under the hypothesis of the first one, and may be demonstrated in the very
same manner.
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The method of solution we have here followed may be applied to all pro-
blems concerning the equilibrium of a mass of fluid, when it is possible to form
the equation of the outer surface; that is, when the forces in action at all the
points of the outer surface are the same functions of the coordinates of those
points, whatever geometrical figure the mass may be supposed to assume. This
in reality comprehends every question that has hitherto occurred ; and, as the
conditions which we have laid down are necessary and sufficient for the equili-
brium in every hypothesis of the forces that can be imagined, we shall not
enter into any further discussion of this point.

9. The preceding analysis, by which we have investigated the figure of equi-
librium of a homogeneous planet is direct and unexceptionable in point of
rigour. It seems hardly possible to express simply in algebraic language, all
the forces that urge the interior particles of the fluid ; and this makes it neces-
sary to have recourse to peculiar modes of reasoning for determining the figure
of equilibrium. The problem, being one of great importance and difficulty,
which has much engaged the attention of geometers, and which requires for its
solution principles different from those that have so long passed current with-
out suspicion of their accuracy, it may not be improper to add another investi-
gation of it by a process of reasoning very different from the foregoing.

Second investigation.

We shall begin with laying down the following lemma. If a mass of homo-
geneous fluid, consisting of particles which attract one another inversely as the
square of the distance, be in equilibrium when it revolves with a certain angu-
lar velocity about an axis; any other mass of the same fluid, the particles at-
tracting by the same law, will be in equilibrium, if it have a similar figure, and
revolve with the same rotatory motion about an axis similarly placed.

Take any two particles similarly placed in the two bodies, and having the
same proportion to one another as the whole masses; it is proved in the Prin-
cipia of NEwTon, and in the works of other authors, that the resultants of the
attractive forces acting upon the particles, have similar directions, and are pro-
portional to the linear dimensions of the two bodies. Further, the centrifugal
forces urging the two bodies to recede from the axes of rotation, are propor-
tional to the respective distances from the axes, that is, to the linear dimen-
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sions of the two bodies. Wherefore the joint action of all the forces is to urge
the two particles in similar directions with intensities proportional to the linear
dimensions of the bodies. And as the same thing is true of all particles simi-
larly situated in the two bodies, if there be an equilibrium in one case, there
will be an equilibrium in the other ; for the forces which urge the particles of
one body are in no respect different from the forces which urge the particles of
the other, except in being all increased or all diminished in the same given
proportion.

This lemma being premised, let A B C repre- P
sent a mass of homogeneous fluid in equilibrium,
by the attraction of its particles in the inverse pro-
portion of the square of the distance, and a cen-
trifugal force caused by revolving about the axis
PQ. The axis P Q will pass through G, the cen-
tre of gravity of the mass. For, abstracting from
any motion or force common to all the particles,
that centre may be considered at rest; and, as
the attractive forces of the particles balance one
another at that point, the centrifugal force must likewise vanish at the same
point.

Let any radius G B, drawn from the centre of gravity to the surface of the
fluid, be divided in a given proportion at 4; and supposing it to turn round
G so as to be directed successively to all the points in the outer surface of the
fluid, the radius G b, being always the same part of G B, will describe an in-
terior surface similar to the outer one, and similarly posited about G. And be-
cause the whole mass A B C is in equilibrium, it follows from the lemma that
the interior mass @ 6 ¢, which is similar to the whole mass, and revolves with
it about the common axis P Q, will be separately in equilibrium, supposing the
exterior stratum of matter were taken away or annihilated.

In the interior surface @ b ¢ assume any molecule am: the forces that act
upon am are; first, the resultant of the centrifugal force and the attraction of
the mass a b ¢; secondly, the attraction of the stratum of fluid between the
two surfaces. Because the interior body of fluid @& ¢ is separately in equili-
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brium, the first of these forces, namely, the resultant of the centrifugal force
and the attraction of the mass a6 c, is perpendicular to the surface a¢b ¢, and
destroyed by the resistance of the fluid within that surface; and from this it
follows that the attraction of the stratum upon am, must likewise be perpen-
dicular to the same surface. For, if it acted obliquely to the surface a b c, it
might be resolved into two partial forces, one perpendicular, and the other
parallel, to the plane touching the surface; and as there is no obstacle to op-
pose the latter force, it would cause the molecule am to move, which is con-
trary to the equilibrium of the whole mass A B C. It appears therefore that
two distinct and independent conditions are required for the equilibrium of
the fluid mass : for all the particles situated in any interior surface @ b ¢ simi-
lar to the outer surface, and similarly posited about the centre of gravity G,
must be urged perpendicularly to the surface in which they are contained, not
only by the resultant of the centrifugal force and the attraction of the interior
mass, but likewise by the attraction of the exterior stratum of fluid.

Conceive three planes intersecting at right angles in the centre of gravity
of the mass, one of them being perpendicular to the axis of rotation PQ: let
x, y, = represent the coordinates of the molecule am, and r = /a2 4 y2 + =2,
its distance from G, x being parallel to PQ; and put V (r) for the sum of the
quotients of all the molecules of the whole mass A B C, divided by their re-
spective distances from am : further, let V' (r) denote the same thing relatively
to the interior mass @ b ¢, that V (r) does relatively to the whole mass ABC:
then V () — V' (r) will be the sum of the quotients of all the molecules of
fluid contained in the stratum between the two surfaces, divided by the re-
spective distances of the molecules from am. According to the known pro-
perties of this function, the partial attractions of the stratum upon am, in the
directions of x, y, %, and tending to lengthen these lines, will be respectively
equal to

d.(V(r)y -V () d.(Vi) -V (r) d. (V (r) = V' (1))
dz ’ dy ’ dz :
Take any point (2 4+ dx, y + dy, %+ d2) in the surface a b ¢, at the infinitely
small distance ds from am: then the resultant of the foregoing attracting
forces in the direction of ds will be equal to
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i.(VO)=V()) az (VO =V@) gy d.(VEO=V)) ax.
dx ds+ dy ';1_3+ dz “ds”

and this resultant must be equal to zero in whatever direction d s is drawn, if
the attraction of the stratum upon am be perpendicular to the surface a6 c.

Wherefore we have,

d. (V ) =V’ (r)) d.(v (" — V@) d (Vo) =V ()
dz d dy dz
Y

dz=0: (5)

and, by integrating,
V (r) — V' (r) = Constant, (6)

which equation must be true at every point in the surface a b c.
Again, the attractive forces of the interior mass urging the molecule am
inwards in the direction of x, y, 2, are respectively equal to
_d. V(@ _4d. V'@ _a.V(n
de 2 Tdy dz
Let f denote the centrifugal force at the distance unit from the axis of rota-
tion ; and, the distance of am from the same axis being ,/y* + =2, the centri-
fugal force of the particles of am will be £,/y2 4 22; and the resolved parts
of this force acting in the prolongations of y and z, will be f'y and f'z. Where-
fore the total accelerating forces urging am in the directions of x, v, 2, and
tending to shorten these lines, are respectively,

4.V d. v' (r)

- +ry),  (Br2 + 1)

and, the condition that the resultant of these forces is perpendicular to the sur-
face a b c, is expressed by this differential equation,

d. V' (r) d. V’() d.V'(r)
- de— . +fy)d ( dzr +fz)dz=0 7)

In the equations (5) and (7) the forces expressed by the co-efficients of the
differentials, act on the same particles and have opposite directions in the
same lines ; wherefore by subtracting the former from the latter, we have,

T2 '
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d.V (r) d.V(r) , d.V(r) .
—flﬂdxr d‘”—( dyr +f3/)d.‘/"‘( dzr +fz)dz=0’ (8)

in which the co-efficients of the differentials express the whole forces urging
the molecule in the directions of «, y, 2.

It is obvious that the equations (7) and (8) must be identical ; for they are
both true at every point of the same surface @ b c. But if the co-eflicients of
the differentials of these two equations be identical, the like co-efficients in the
equation (5) must be separately equal to zero; and this proves that the co-
ordinates of the surface a b ¢ do not enter into the equation (6), which there-
fore contains such quantities only as remain invariably the same at all the
points of that surface.

The equations (7) and (8) being identical, the latter will belong indifferently
to all the similar surfaces in the interior parts, and to the outer surface which is
their limit. Wherefore, if for the sake of distinction we suppose that » becomes
R at the upper surface, we shall obtain the equation of that surface by inte-
grating, viz.

C=V®) + L @2+ =) ©)

The integral of (8) will likewise give the equation of any of the interior sur-
faces, as a b c, viz.

P=VO +5 @ +m -G (10)
the quantity C being absolutely constant in all circumstances, and the same as
in the equation of the upper surface, and p heing a new quantity which is con-
stant when the co-ordinates are taken in the surface a b ¢, but varies when
the co-ordinates belong to any point of the mass not contained in that surface.
At the upper surface p vanishes; it changes its value in passing from one of
the interior surfaces to another ; and it is evidently the hydrostatic pressure at

. d d d
every point of the mass, because — g% - Eg’ - —JZ—S, are equal to the co-effi-

cients of the differentials in equation (8) and to the accelerating forces which
oppose and destroy the variation of pressure. The equations (6) and (9) and
(10) at which we have arrived by this new train of reasoning are the very same
with the equations (4) and (1) and (3) of the first investigation ; and as the



AND THE FIGURE OF A HOMOGENEOUS PLANET. 141

remainder of the solution is deduced entirely from these equations, it would
be superfluous to repeat here what has already been fully explained. The same
procedure as in the first investigation will prove, that the figure of the fluid in
equilibrium is exclusively an oblate elliptical spheroid of revolution turning

. .k . .
about the less axis %, and that the ratio —; of the two axes is derived from the

centrifugal force by means of the equation
PSR Y

10. The level surfaces of the mass in equilibrium are properly the interior
surfaces similar to the outer surface, and similarly posited about the common
centre. Such surfaces agree with Crarraur’s definition ; for they are perpen-
dicular to the resultant of the forces urging the particles contained in them, as
appears from the differential equation (8), which is common to them all. But
as every particle within the mass is acted upon by several forces, it may be-
come a question whether there are not other interior surfaces besides those
similar to the outer one, which possess the properties of being equably pressed,
and of being perpendicular to the resultant of the forces in action. It is this
point that we are now to investigate.

Suppose that A B C represents an oblate elliptical
spheroid of homogeneous fluid in equilibrium by re- —
volving about the axis P Q; and let @ 4 ¢ be an oblate
elliptical spheroid within A B C, the centres, the less \ R
axes, and the equators of the two figures coinciding : o \ |
taking any particle (2, y, ) of the interior mass a b ¢, ck j /
the attractions of the whole mass AB C urging the /
particle in the respective directions of the co-ordinates, e —
may, as before, be represented by e

=

Ae, B'y, B'z:

and in like manner the attractions of the interior mass @ 6 ¢ upon the particle,
may be denoted by

A" z, B’ Y B" o
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and the attractions of the matter between the two surfaces upon the particle,
will be
(A’ —_ A") ,z,, (B’ —_— BH) y’ BI — B") 2.

As these forces act upon every particle of the mass a & ¢, they will cause an in-
ternal pressure ; let p' denote the hydrostatic pressure at the point (, y, )
caused by the attraction of the external matter; then, by the general theory,
we shall have

dp + (A' — A ede + (B'—B") (ydy + 2d2) = 0;
and, by integrating,
2 2 + 2
p’=C’-—(AI—A")}‘2—-—(B’—-B").'yzz. (11)
Further, the joint effect of the centrifugal force and the attraction of the

whole mass AB C upon the particle (v, v, ) in the respective directions of
the coordinates, is expressed by these forces,

Ao, B=fly, O -f)a:
and if p be the pressure thence arising, we shall have

dp+ A adae + B —f) (ydy + zdz) = 0;

and consequently,

2 . 2+2 )
p=C—A% — @B .25 (12)

which is equivalent to the equation (10), and expresses the whole hydrostatic
pressure at every point (x, y, ) within the mass A B C.

In order to form a just notion of the pressures p and p/, we shall suppose
that the point (2, y, 2) is in the interior surface, at am : conduct a narrow
canal from G to @ m, and continue it outward to the upper surface of the fluid,
at AM. Now p is the effort of all the molecules in the canal A am M pro-
duced by all the forces that urge them along the canal; and p’ is the effort of
the canal a G m caused by the attraction of the matter between the two sur-
faces upon the particles contained in the canal. The pressure p is always
directed inward ; but the direction in which p' acts will depend upon the na-
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ture of the interior spheroid. If it be more oblate than the exterior spheroid
A B C, A" will be greater than A', and the attraction (A'— A") @ tending from
the equator, the pressure of the canal @ Gm will be outward and opposed to
that of the canal A am M. On this supposition, therefore, the whole action
of the matter exterior to the spheroid a b ¢ will cause a pressure upon the mole-
cule @ m, equal to p — p'. By subtracting the equations (11) and (12) we get

, 2 9+2
p—p=C—C—A"Z — B —f). 1> (13)

and we have now to inquire whether a spheroid can be found that will satisfy
this equation, on the supposition that p — p'is the same at all the points of
the surface of the spheroid.

The equation (13) evidently comprehends the level surfaces, which are similar
and similarly situated to the upper surface A B C: for, on the supposition that
the figures are similar, we have A'= A", B' = B", p' = C), and the equation
(13) is identical to the equation (12) which, by giving different values to p, de-
termines all the level surfaces. The equation (13) is similar in its form to the
equation (12), A" and B" being the same functions of the excentricity of the
spheroid @ b c, that A’ and B' are, of the excentricity of the spheroid A B C;
and the centrifugal force f enters alike into both equations. It is therefore
evident that the solution of the latter, supposing p constant, and the solution
of the former supposing p — p' constant are both contained in the equation,

F=B — LA
=B — A

and, as from this two values of ;%: are in general obtained, one of these results
determines the spheroid A B C and its level surfaces, and the other determines
the interior spheroid @ b c, the surface of which sustains the same pressure at
every point by the action of the exterior fluid, and which is therefore sepa-
rately in equilibrium.

There is this difference between the level surfaces and the other surfaces of
equable pressure, that the former spread through the whole mass and ultimately
coincide with the upper surface, whereas the latter, on account of the dissi-
milarity of figure, are confined to a part of the mass. Of the two spheroids
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answering to the same centrifugal force, when the exterior one is the less
oblate, the greatest interior surface of equable pressure, which is not a level
surface, stands upon the equator ; and the rest are within this, similar and con-
centric to it, as in this figure

e
—
T~ ,\*_‘/

When the exterior spheroid is the more oblate of the two, the greatest inte-
rior surface is described on the less axis, and the rest are similar and concen-
tric to it, as thus,

—
N “1
\ N J/

When the centrifugal force f has a certain relation to the attractive force,
the two dissimilar spheroids A B C and a & ¢ coincide in one; and in this case
there are no interior surfaces of equable pressure except the level surfaces.

It has now been demonstrated that, in every oblate spheroid in equilibrium
by a rotatory motion, there are two sets of interior surfaces equably pressed by
the action of the exterior fluid ; and, in consequence, that there are two dif-
ferent figures of equilibrium, and only two answering to the same velocity of
rotation. But in the hypothesis of the first problem of this paper, and accord-
ing to the theory of Cramraut, which as far as regards a fluid entirely at liberty,
is equivalent to that problem, there is in every case of equilibrium, only one set
of interior surfaces equably pressed by the exterior fluid; and this is an incon-
trovertible proof that the theory of the French geometer is insufficient for de-
termining the figure of equilibrium of a homogeneous planet in a fluid state.
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MacravriN first demonstrated synthetically the equilibrium of an oblate
elliptical spheroid when it revolves about the less axis with a certain angular
velocity. In examining the equation of the surface of the fluid, D’ALEMBERT
discovered that it admitted of being solved more than one way, that is, he
found that there are spheroids of different oblateness which will be in equili-
brium with the same velocity of rotation ; and LarLace proved that there are
two such spheroids and no more. Of this truth, first made known merely as
a mathematical deduction from an algebraic equation, we have here attempted
to give the physical explanation.

Having now fully treated of the equilibrium of a homogeneous fluid, the
order of discussion laid down would lead us to investigate that of one of vari-
able density; but the length of this paper makes it advisable to reserve this
part of our subject for another occasion.
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